MTH 512, Spring 2023, 1-1

MTH 512, Exam-I

Ayman Badawi

QUESTION 1. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be an \mathbb{R} -homomorphism that is ONTO. Given T(2, 1, 5) = (0, 0), T(1, 0, 2) =

(b) Prove that

65

$$\big(\sum_{i=1}^n a_i\big)^2 \le n \sum_{i=1}^n a_i^2$$

 $\left|\sum_{i=1}^{n} a_i b_i\right| \le \sqrt{\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2}$

QUESTION 3. (a) Let $x, y \in V$, where V is a real inner product vector space. Prove that

(3,0), and T(0,1,0) = (0,5). Find all points in \mathbb{R}^3 , say (a, b, c), such that T(a, b, c) = (6, -5)

QUESTION 2. (a) Let $1 \le n < \infty$. Now, let $a_1, a_2, ..., a_n, b_1, ..., b_n \in R$. Prove that

$$|x+y|^2 + |x-y|^2 = 2(|x|^2 + |y|^2)$$

(b) Let V be a normed finite dimensional vector space and $T: V \to V$ be a linear transformation such that $||T(v)|| \leq 3||v||$. Prove that $T - \sqrt{11}I$ is an invertible linear transformation from V ONTO V.

(c) Let $T : R^2 \to R^2$ be a linear transformation such that T(3,5) = (6,10), and $T - 5I : R^2 \to R^2$ is a non-invertible linear transformation. Prove that T is invertible. [Hint: T(3,5) = 2(3,5)]

QUESTION 4. (i) Give me an example of a normed vector space V where ||u+w|| = 2||u||, for some $u, w \in V$, but $||u|| \neq ||w||$.

- (ii) Given $T : R^3 \to R^2$ is a linear transformation, B is a basis for R^3 and $C = \{(1, 1), (-1, 1)\}$ is a basis for R^2 . Assume that $[T]_{B,C} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix}$. Find the standard matrix M_T and Ker(T).
- (iii) We know that $\langle f_1, f_2 \rangle = \int_0^1 f_1 f_2 dx$ for every $f_1, f_2 \in P_3$ is an inner product on P_3 . Let $D = span\{x^2, x\}$. Find D^{\perp} .
- (iv) Let <, > be the normal dot on \mathbb{R}^4 . Given $D = span\{(1, 1, 1, 1), (-2, -3, -1, -2)\}$ and dim(D) = 2. Find the point $d \in D$ that is the nearest to the point $Q = (16, -4, 4, -4) \notin D$, i.e., find the point d in D such that |Q d| is minimum. [Hint: OPTIONAL, maybe the kill below method gives you an orthogonal basis for D]

QUESTION 5. Let \langle , \rangle be the normal dot on \mathbb{R}^n and \mathbb{R}^m . Given $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Let $\{e_1, ..., e_n\}$ be the standard basis of \mathbb{R}^n and $\{b_1, ..., b_m\}$ be the standard basis of \mathbb{R}^m .

(i) Prove that there are unique m points in \mathbb{R}^n , say $q_1, \ldots, q_m \in \mathbb{R}^n$ such that

$$T(v) = (\langle q_1, v \rangle, \langle q_2, v \rangle, \dots, \langle q_m, v \rangle)$$

for every $v \in \mathbb{R}^n$. [Hint: just translate some familiar math!]

- (ii) Prove that $\dim(Ker(T^*)) = \dim((Range(T))^{\perp})$ [Hint : Let L be the co-linear of T^* , show that $Ker(L) = (Range(T))^{\perp}$ (maybe (i) is useful). Hence the translation of Ker(L) to the language of $(R^m)^*$ is the $Ker(T^*)$. Thus $\dim(Ker(L)) = \dim(Ker(T^*)) = \dim((Range(T))^{\perp})$]
- (iii) Assume $R^n = R^2$ and $R^m = R^3$ and $Range(T) = span\{q_1 = (1, 1, 1), q_2 = (-1, -1, 0)\}$ (note that q_1, q_2 are independent). Find $Ker(T^*)$.

Faculty information

EXam 1: 55 Vigeal I'mare SAHEL Question 1: let $T: \mathbb{R} \longrightarrow \mathbb{R}^2$ be an \mathbb{R} -homomorphism that is onto Find all points in \mathbb{R} , say (a, b, c) st. T(a, b, c) = (6, -5). we have T(2, 1, 5) = (0, 0)T(1, 0, 2) = (3, 0)the three pints (a, 15), (1,0,3), (0, 1, 0) are linearly independent. So they form a basis for IK. and any vector in IR independent. So they form a basis for IK. and any vector in IR is a whope linear combination of these three wector. moreover the intege of my V in IR is dedologined by the intege of those 3 vectors the intege of my V in IR is dedologined by the intege of those 3 vectors $|et v \in \mathbb{R}, Hen T(v) = C_1 T(2, 1, 5) + C_2 T(1, 0, 2) + C_3 T(0, 1, 0).$ $\begin{bmatrix} 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ c_{3} \\ c_{3} \\ c_{3} \end{bmatrix} = \begin{bmatrix} -5 \\ -5 \\ c_{3} \\ c_{3} \\ c_{3} \end{bmatrix} + \begin{bmatrix} -5 \\ c_{3} \\ c_{3$

 $\langle \gamma \rangle$

Quistiona: a) let 2 (1 (w. Now let a, - 9, b, - b, ER. Prove that $\sum_{i=1}^{3} a_i b_i \left\{ \sqrt{\frac{2}{i-1}} a_i^2 \frac{2}{\frac{2}{i-1}} b_i^2 \right\}$ we know that IR is a vector space over IR and $\langle (a_1 - a_1), (b_1 - b_1) \rangle = a_1b_1 + a_2b_2 - a_1b_1 = \stackrel{2}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\overset{i}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\atop\atopi=1}{\underset{i=1}{\atop\atop1}{\underset{i=1}{\atopi=1}{\underset$ $\left| \left(\left(a_{1} - - c_{n} \right), \left(b_{1} - - b_{n} \right) \right\rangle \right| \left| \left(\sqrt{\left(a_{1} - - c_{n} \right)}, \left(a_{1} - - c_{n} \right) \right\rangle \sqrt{\left(b_{1} - - b_{n} \right)}, \left(b_{1} - - b_{n} \right) \right| \left| \left(\sqrt{\left(a_{1} - - c_{n} \right)}, \left(a_{1} - - c_{n} \right) \right\rangle \sqrt{\left(b_{1} - - b_{n} \right)} \right|$ $SV_{i} = \frac{2}{i=1} \frac{1}{i} \frac$ let $b_i = a_i$ in (D) then we get $\sum_{i=1}^{n} a_i a_i = \sum_{i=1}^{n} a_i^2 \left\{ \left\{ \sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} a_i^2 \right\} \right\}$ $= \sqrt{\left(\frac{2}{i}\right)^2} + \left(\frac{2}{i}\right)^2$ What is $\frac{2}{z+1}a_{i}^{2}\left(\sum_{i=1}^{2}a_{i}^{2}\right)^{2}$ where and since $\sum 1$ then $\left(\sum_{i=1}^{2}a_{i}^{2}\right)^{2}$ or and since $\sum 1$ then $\left(\sum_{i=1}^{2}a_{i}^{2}\right)^{2}$ Nex where $\sum \sum_{i=1}^{2}a_{i}^{2}$

Z]: let T: R - R st. T(3,5) = (6, 10) = & (3,5) 10 24 m Bigen value of T [1.1] T-SI: IR -> IR is a non invertible linear transformation mean that I V 7 9 in the null space of T-SI. (o sis on Rigenvalue of I ebuiersly dim $(E_2) = 1$ and dim $(E_5) = 1$ to Famige (I) = E2 + ES = IR² to T is air jective. let U, the eigen vector corregion ding to 2 L. T V2 the Bigen vector ~ to 5 let we R2 then w= C1V1 + C2V2 $T(w) = c_1 T(v_1) + c_2 T(v_2)$ where V_1 , V_2 are linearly independent, then T(w) = (90)where V_1 , V_2 are linearly independent, then T(w) = (90)iff $C_1 = C_2 = 0$ is Ker $(T) = \frac{1}{2} \sqrt{1 + \frac{1}{2}} = \frac{1}{2$ => to it is invertible.

 $\left\langle \right\rangle$

D: T: IR -> IR is a L.T. B is a basis for IR C=J(2,2), (-2,2) I is a basis for IRFind the standard motivity MAssure [T]B, casgiven . Find the standard motivity MQuestion 41 C[T]B,C = M_ (GESSUMITAR B'FRE & dered bavis). 17 [A A A TJpc = C'MB we know $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix} = M_{T}$ $Kor(L_{T})$ $Kor(L_{T})$ 3 LEMPLINK $K_{\text{PI}}(T) = \begin{cases} c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + 5 \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} + c_1 \cdot 5 + i k = 1 \\ -1 \end{cases}$ $\frac{1}{4} = \frac{1}{4} \left[\frac{1}{4} - \frac{1}{4} \right] \left[\frac{1}{4} - \frac{1}{4} - \frac{1}{4} \right] \left[\frac{1}{4} - \frac{1}{4} - \frac{1}{4} \right] \left[\frac{1}{4} - \frac$ 3. D=} d EB: < d, n >= 0 n < d, \$70] $\begin{cases} d = \frac{1}{2} \left[\frac{$ $\left[\frac{x(ax^2+bn+c)dx}{3} + \frac{b}{2} + \frac{b}{3}\right]$ $\begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{1}{5} & \frac{1}{4} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{1}{5} & \frac{1}{4} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{1}{5} & \frac{1}{6} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ we set } b = -\frac{16}{3} C , C \in \mathbb{R}$ Shuther this your are looking for

€+ let v= (1, 1, 2, 2) Use my Here $V_2 = \left[-2, -3, -1, -2\right] - \frac{-8}{4} \left(1, 1, 1, 1, 1\right)$ $V_2 = \left[-\frac{14}{3}, -\frac{23}{3}, -\frac{1}{3}, -\frac{2}{3}\right] - \frac{14}{3}$ hinfless J1111 2 28,462 thus B= {V, 1V, { is an orthogonal bard for D. [0-110 Dorthe appa b) 23 8 An 2(1,1,1,1), $d = \frac{\langle Q, V_1 \rangle}{|V_1|^2} + \frac{\langle Q, V_2 \rangle}{|V_2|^2} + \frac{\langle Q, V_2 \rangle}{|V_2|^2}$ (0,-1,1,0) $d = \frac{12}{4} (3, 1, 1, 1) + \frac{-\frac{176}{9}}{946} \left(-\frac{111}{5}, -\frac{23}{9}, -\frac{5}{5}, -\frac{14}{5}\right).$ $\frac{\sqrt{2}}{1} \cdot k + \|\cdot\| \cdot \|\cdot\|^2 = \frac{1}{8}$ $\|(a_1, a_2, \frac{3}{3})\| = m \alpha x \|a_i\| ; 1 \le i \le 3 \le 9$ $\|\mu\| = 3$ |et w = (-3, 0, 2t|)||v || = 4 V = (-2,0,4) M + V = (-5, 0, 6) || M + V || = 6 = 2 || M ||

$$\begin{array}{c} \underbrace{\operatorname{divertien} 5:}_{\operatorname{Her}} & \operatorname{let} \quad T: \operatorname{IR}^{n} \longrightarrow \operatorname{Her}^{n} \operatorname{uill}^{n} \operatorname{slow} \operatorname{docd} \operatorname{icded} \operatorname{bries} \\ \underbrace{\operatorname{Her}} \quad T_{0} \operatorname{thes}^{n} \operatorname{a} \operatorname{metrix} \operatorname{trainer tation} \operatorname{let's} \operatorname{cell} \operatorname{it} M \\ \underbrace{\operatorname{Her}} \quad M = \left[T_{0}^{n} \right] \quad T_{0}^{n} \left[T_{0}^{n} \right] \quad \operatorname{Her}} \\ \underbrace{\operatorname{Her}} \quad T_{0}^{n} \left[T_{0}^{n} \right] \quad T_{0}^{n} \left[T_{0}^{n} \right] \quad T_{0}^{n} \left[T_{0}^{n} \right] \quad \operatorname{Her}} \\ \underbrace{\operatorname{Her}} \quad T_{0}^{n} \left[T_{0}^{n} \right] \quad T_{0}^{n} \left[T_{0}^{n} \right] \quad \operatorname{Her}} \\ \underbrace{\operatorname{Her}} \quad \operatorname{Her}} \quad \operatorname{Her}} \\ \underbrace{\operatorname{Her}} \quad T_{0}^{n} \left[T_{0}^{n} \right] \quad T_{0}^{n} \left[T_{0}^{n} \right] \quad \operatorname{Her}} \\ \underbrace{\operatorname{Her}} \quad T_{0}^{n} \left[T_{0}^{n} \right] \quad \operatorname{Her}} \\ \underbrace{\operatorname{Her}} \quad T_{0}^{n} \left[T_{0}^{n} \right] \quad \operatorname{Her}} \\ \underbrace{\operatorname{Her}} \quad \operatorname{Her}} \\ \\ \underbrace{\operatorname{Her}} \quad \operatorname{Her}} \\ \\ \underbrace{\operatorname{Her}} \quad \operatorname{Her}}$$

R-R $Fonge(T) = 1R^2$ T: R R $\begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \end{array}$ M_= 3×2 $\dim \ker(\tau^*) = 1$ T^{α} : $\mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ $M_{TR} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ $k \in (T^{*}) = span \left\{ (-1, 1, 0) \right\} = span \left\{ -e_{1}^{*} + e_{2}^{*} \right\}$ He was the way of the second o they we have an entry v hard and h Yan here that