MTH 512, Exam-I

Ayman Badawi

65

QUESTION 1. Let $T: R^{3} \rightarrow R^{2}$ be an \mathbb{R}-homomorphism that is ONTO. Given $T(2,1,5)=(0,0), T(1,0,2)=$ $(3,0)$, and $T(0,1,0)=(0,5)$. Find all points in R^{3}, say $(\mathrm{a}, \mathrm{b}, \mathrm{c})$, such that $T(a, b, c)=(6,-5)$

QUESTION 2. (a) Let $1 \leq n<\infty$. Now, let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in R$. Prove that

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}}
$$

(b) Prove that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2} \leq n \sum_{i=1}^{n} a_{i}^{2}
$$

QUESTION 3. (a) Let $x, y \in V$, where V is a real inner product vector space. Prove that

$$
|x+y|^{2}+|x-y|^{2}=2\left(|x|^{2}+|y|^{2}\right)
$$

(b) Let V be a normed finite dimensional vector space and $T: V \rightarrow V$ be a linear transformation such that $\|T(v)\| \leq 3\|v\|$. Prove that $T-\sqrt{11} I$ is an invertible linear transformation from V ONTO V.
(c) Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation such that $T(3,5)=(6,10)$, and $T-5 I: R^{2} \rightarrow R^{2}$ is a non-invertible linear transformation. Prove that T is invertible. [Hint: $T(3,5)=2(3,5)$]

QUESTION 4. (i) Give me an example of a normed vector space V where $\|u+w\|=2\|u\|$, for some $u, w \in V$, but $\|u\| \neq\|w\|$.
(ii) Given $T: R^{3} \rightarrow R^{2}$ is a linear transformation, B is a basis for R^{3} and $C=\{(1,1),(-1,1)\}$ is a basis for R^{2}. Assume that $[T]_{B, C}=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1\end{array}\right]$. Find the standard matrix M_{T} and $\operatorname{Ker}(T)$.
(iii) We know that $\left.<f_{1}, f_{2}\right\rangle=\int_{0}^{1} f_{1} f_{2} d x$ for every $f_{1}, f_{2} \in P_{3}$ is an inner product on P_{3}. Let $D=\operatorname{span}\left\{x^{2}, x\right\}$. Find D^{\perp}.
(iv) Let $<,>$ be the normal dot on R^{4}. Given $D=\operatorname{span}\{(1,1,1,1),(-2,-3,-1,-2)\}$ and $\operatorname{dim}(D)=2$. Find the point $d \in D$ that is the nearest to the point $Q=(16,-4,4,-4) \notin D$, i.e., find the point d in D such that $|Q-d|$ is minimum. [Hint: OPTIONAL, maybe the kill below method gives you an orthogonal basis for D]

QUESTION 5. Let $<,>$ be the normal dot on R^{n} and R^{m}. Given $T: R^{n} \rightarrow R^{m}$ is a linear transformation. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of R^{n} and $\left\{b_{1}, \ldots, b_{m}\right\}$ be the standard basis of R^{m}.
(i) Prove that there are unique m points in R^{n}, say $q_{1}, \ldots, q_{m} \in R^{n}$ such that

$$
T(v)=\left(\left\langle q_{1}, v\right\rangle,\left\langle q_{2}, v\right\rangle, \ldots .,\left\langle q_{m}, v\right\rangle\right)
$$

for every $v \in R^{n}$. [Hint: just translate some familiar math!]
(ii) Prove that $\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right)=\operatorname{dim}\left((\operatorname{Range}(T))^{\perp}\right)\left[\right.$ Hint : Let L be the co-linear of T^{*}, show that $\operatorname{Ker}(L)=$ $(\operatorname{Range}(T))^{\perp}$ (maybe (i) is useful). Hence the translation of $\operatorname{Ker}(\mathrm{L})$ to the language of $\left(R^{m}\right)^{*}$ is the $\operatorname{Ker}\left(T^{*}\right)$. Thus $\left.\operatorname{dim}(\operatorname{Ker}(L))=\operatorname{dim}\left(\operatorname{Ker}\left(T^{*}\right)\right)=\operatorname{dim}\left((\operatorname{Range}(T))^{\perp}\right)\right]$
(iii) Assume $R^{n}=R^{2}$ and $R^{m}=R^{3}$ and Range $(T)=\operatorname{span}\left\{q_{1}=(1,1,1), q_{2}=(-1,-1,0)\right\}$ (note that q_{1}, q_{2} are independent). Find $\operatorname{Ker}\left(T^{*}\right)$.

EA an 1.
E' mare SAHEL
Question 1: let $T_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an \mathbb{R} - homomorfthisn that is onto Find all points in \mathbb{R}^{3}, say (a, b, c) st. $T(a, b, c)=(6,-5)$.
we have

$$
\begin{aligned}
& T(2,1,5)=(0,0) \\
& T(1,0,2)=(3,0) \\
& T(0,1,0)=(0,5)
\end{aligned}
$$

the three pints $(2,15),(1,0,2),(0,1,0)$ are. linearly indoprdeit. So they form a bass for \mathbb{R}. aid any vector in \mathbb{R}^{3} is a mope linear combination of these three vectac. moreover the inge, A^{\prime} ry V in \mathbb{R}^{3} is dedolnined by the image of these 3 vectors let $v \in \mathbb{R}^{3}$, hen $T(U)=C_{1} T(2,1,5)+C_{2} T(1,0,2)+C_{3} T(0,1,0)$.

$$
\left[\begin{array}{lll}
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-5
\end{array}\right]
$$

the solution st to the above system $\{(t, 2,-1), t \in \mathbb{R}\}$ thus $V=t(2,1,5)+2(1,0,2)-(0,1,0)=\{t(2,1,5)+(2,-1,4)\} \in \in$ ξ

Question 2: al let $1<1 \leqslant \infty$. Now let $a_{1} \ldots a_{n}, b_{1} \cdots b_{n} \in \mathbb{R}$. Prove that

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right|\left\langle\sqrt{\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}}\right.
$$

wei know that \mathbb{R}^{n} is a vector space over \mathbb{R}

$$
\begin{aligned}
& \text { We' know that } \mathbb{R} \text { is a vector space over } \mathbb{R} \\
& \text { and }\left\langle\left(a_{1} \ldots a_{n}\right),\left(b_{1} \ldots b_{1}\right)\right\rangle=a_{1} b_{1}+a_{2} b_{2} \ldots . . a a_{n} b_{n}=\sum_{i=1}^{n} a_{n} \\
& \text { is an inner product space }
\end{aligned}
$$

is a in er product space.
so we car apply schwartz inequality.

$$
\begin{aligned}
& \mid\left\langle\left(a_{1} \ldots \cdot a_{n}\right),\left(b_{1}-b_{n}\right)\right\rangle\left\langle\left\langle\sqrt{\left\langle\left(a_{1}-a_{n}\right),\left(a_{1} \cdots a_{n}\right)\right\rangle} \sqrt{\left\langle b_{1}, b_{n}\right)\left(b_{1} \cdots-h\right.}\right.\right. \\
& \sin _{i_{n}}\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}=\sqrt{\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}}
\end{aligned}
$$

b]. Prove the $\left(\sum_{i=1}^{n} a_{i}\right)^{2} \leqslant n \sum_{i=1}^{n} a_{i}^{2}$
let $b_{i}=a_{i}$ in (1)
then west

$$
\begin{aligned}
& a_{i}^{1} \text { in (1) } \\
& \sum_{i=1}^{n} a_{i} a_{i}=\sum_{i=1}^{n} a_{i}^{2}\left\langle\sqrt{\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} a_{i}^{2}}\right. \\
& \\
& =\sqrt{\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{2}} \\
&
\end{aligned}
$$

$M^{2} \operatorname{cin}^{x}$ and since $n \geqslant 1$ then
$\left(\angle a_{i}\right)^{2 m} c^{\text {an }}$

Question 3: |el $x, y \in V$, where V is a red imper product vector space.
a]. Prove that.

$$
\begin{aligned}
& |n+y|^{2}+|n-y|^{2}=\langle n+y, n+y\rangle+\langle n-y, n-y\rangle \\
& =\langle n, n\rangle+\langle n, y\rangle+\langle y, n\rangle+\langle y, y\rangle+\langle n, n\rangle-\langle x, y\rangle-\langle y, n\rangle+\langle y, i \\
i n & =|n|^{2}+2\langle x, y\rangle+|y|^{2}+|n|^{2}-2\langle n, y\rangle+|y|^{2} \\
\eta & \left.=\left.2| | n\right|^{2}+|y|^{2}\right\rangle
\end{aligned}
$$

$$
=2\left(|x|^{2}+|y|^{2}\right)^{2}
$$

b). Let $V k$ a normed finite dimennibal vector space and $T: U \rightarrow V$ is a linear transformations.t. $\|T(U)\| \sum_{3}\|U\|$.
Prove that $T-\sqrt{11} I$ is an invertible linear traspinatrono.
\rightarrow to slaw that $T-\sqrt{12} I$ is invertible, we need to shows that it is a bijection, ie infective and serjective hut if it is in jective them $\operatorname{dim}(\operatorname{ker}(T-\sqrt{11} I))=0$ thus $\operatorname{dim}(U)=\operatorname{dim}(\operatorname{Range}(T-\sqrt{11} T))=n\langle\infty$ so it must be serjective.
is the trivial one $\begin{aligned} & \text { supper not, then } \exists v O_{V} \text { st. } \quad(T-\sqrt{11} D)(V)=O_{V}, ~\end{aligned}$ that is $\sqrt{12}$ is one Bigen value of T hence $\exists V \neq O_{V}$ sit. $T(U)=\sqrt{11} U$

$$
\begin{aligned}
& \text { is } \exists v \neq O_{U} \text { sit. } T(U)=\sqrt{11} \\
& \text { se }\|T(U)\|=\|\sqrt{12} \cup\|=|\sqrt{11}|\|v\| \\
& \quad \text { but }\|T(V)\|\langle 3\|V\| \quad \forall \quad U \in V \\
&
\end{aligned}
$$

l]. It $T: R^{2} \rightarrow R^{2}$ st. $\left.T(3,5)=16,10\right)=\$(3,5)$
so 2 is an Brigen value of T invertible linear trans formation

$$
\begin{aligned}
& \text { that } \exists \quad \cup \neq O_{V} \text { in the nil space of } T-5 I \text {. }
\end{aligned}
$$

so $\operatorname{Rangl}(T)=E_{2}+E_{5}=\mathbb{R}^{2}$
so T is arjective.
let U_{1} the risen vector corresponding to 2
U_{2} the Bigen valor $N \quad$ to 5
let $\omega \in R^{2}$ then $W=C_{1} V_{1}+C_{2} V_{2}$

$$
\begin{aligned}
& W=C_{1} V_{1}+C_{2} V_{2} \\
& T(W)=C_{1} T\left(V_{1}\right)+C_{2} T\left(V_{2}\right) \\
& T(W)=2 C_{1} V_{1}+5 C_{2} V_{2}
\end{aligned}
$$

vince U_{1}, V_{2} are linearly independent then $T(W)=(0,0)$ iff $C_{1}=C_{2}=0$ so $\operatorname{ker}(T)=\left\{O_{l}\right\} \Rightarrow T$ is injectix $\Rightarrow s o$ it is invertible.

- Question Li
2.: $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a L.T. B is a bass for \mathbb{R}^{3}

$$
\left(\mathbb{R}^{3} \rightarrow \mathbb{R}(7,1),(-1,1)\right\} \text { is a basis for } \mathbb{R}^{2}
$$

issue [T $]_{b, c}$ as given. Find the stand ard matrix M_{T} we know $[T]_{B_{1}}=C^{-1} M_{T} B^{-1}$

$$
\left\{-36(-1)^{4}\right)
$$

$$
c\left(x, x^{x}\right.
$$

$$
=S_{2(1,1)}
$$

3.) $D^{+}=\left\{\begin{array}{l}f P_{3},\left\langle f, n^{2}\right\rangle=0 \wedge\langle f, k\rangle_{2}^{0} \hat{S}_{n}^{0} .\end{array}\right.$

$$
h_{(-1)}(-)
$$

Let $\left.f(x)=a n^{2}+b x+c=1\left(a n^{2}+h n+c\right) n^{2}=\int_{0}^{1} a\right)^{2}+b n^{3}+c n^{2} d x=\frac{a}{5}+\frac{b}{4}+\frac{c}{3}$

$$
\begin{aligned}
& \int_{0}^{1}\left(a x^{2}+h n+c\right) n=\int_{0} \\
& \int_{0}^{1}\left(a x^{2}+b x+c\right) d x=\frac{a}{3}+\frac{b}{2}+c \\
& \int_{0} \text { felughths for }
\end{aligned}
$$

clung this

$$
\begin{aligned}
& \text { on, ere looking for } \\
& {\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{2} & 1 \\
\frac{1}{5} & \frac{1}{4} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { we sgt } a=5 c, c \in \mathbb{R}} \\
& 6_{0}=3^{5^{9}} \times / 4 \\
& D^{1}=\operatorname{sian}\left\{5 x^{2}-\frac{16}{3} x+1\right\}
\end{aligned}
$$

(5): let $v_{1}=(1,1,1,1)$
$\begin{aligned} \text { then } v_{2} & =(-2,-3,-1,-2)-\frac{-8}{18}(1,27,1,1) \\ V_{2} & =\left(\frac{-14}{-9}, \frac{-23}{5}, \frac{-5}{20}, \frac{-14}{82}\right) \\ \text { thus } B & \left.=\left\{v_{1}, U_{2}\right\} \text { is orthogonal bass for } 1\right) .\end{aligned}$
use my hint!

$$
\left\{\begin{array}{ccc}
1 & 1 & 1 \\
-2-3 & 1 \\
-2
\end{array}\right\}^{28_{1}+R_{2}}{ }^{\geqslant+}
$$

$\left[\begin{array}{cccc}1 & 1 & 1 & 10 \\ 0 & -1 & 1 & 0\end{array}\right]$ anther
D $23 \sin \{(1,1,1,1)$
$d=\frac{\left\langle Q_{1}, v_{1}\right\rangle}{\left|v_{1}\right|^{2}} v_{1}+\frac{\left\langle Q_{1}, v_{2}\right\rangle}{\left|v_{2}\right|^{2}} v_{2}$
$d=\frac{12}{4}(1,1,1,1)+\frac{\frac{-176}{9}}{\frac{916}{81}}\left(\frac{-111}{9}, \frac{-23}{9}, \frac{-5}{9}, \frac{-14}{9}\right)$.

1. let $\|:\|: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$

$$
\begin{array}{ll}
\text { let }\|:\|: \mathbb{R} \rightarrow \| \\
\left.\left\|\left(a_{1}, a_{2}, a_{3}\right)\right\|=\operatorname{mox}\right)\left|a_{i}\right| ; & 1 \leqslant i \leqslant 3\} \\
\text { let } \mu=(-3,0,2) & \|\mu\|=3 \\
V=(-2,0,4) & \|v\|=4
\end{array}
$$

$$
\begin{aligned}
\mu+V= & -5,0,6) V \\
& \sqrt[1]{1} G^{00}
\end{aligned}
$$

"Question5; let $T: \mathbb{R}^{\prime \prime} \rightarrow \mathbb{R}^{\prime \prime \prime \prime}$ with stau dord oredred bais then T_{U} has a motrix relneratation let's call it M

$$
\text { then }_{\substack{ \\V_{B}}}^{\left.M=T\left(e_{1}\right) T\left(e_{2}\right)^{\prime} T\left(e_{3}\right) \cdots T\left(e_{n}\right)\right]_{\text {maxn }} \text { M } 11}
$$

$$
T(V)=M_{m \times n} V_{n \times 1}
$$

thes every row in M is a point in $\mathbb{R}^{\prime \prime}$ there are mof of the hence $T(U)=\left[\begin{array}{lll}q_{11} & q_{1} & q_{1 n} \\ q_{21} & & q_{2 n} \\ q_{m 1} & & q_{m n} \\ q_{m} & \\ v_{n}\end{array}\right]\left[\begin{array}{c}v_{1} \\ 1 \\ v_{n}\end{array}\right]$
2.)
then $T^{* *}: \mathrm{Nin}_{\text {in }}^{+\infty} \rightarrow V^{+\infty}$ "n.

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{Range}(T))^{\perp}=\operatorname{dim}(\operatorname{codanain})-\operatorname{dim}(\beta \text { ange } T)! \\
& =m^{\prime} \text { - \# of independect colmans ar rous } \\
& \text { if } T: V \longrightarrow V J=m
\end{aligned}
$$

$$
\begin{aligned}
& 5 / 6 \\
& =\left(q_{11} v_{1} \ldots\right. \\
& =\left\langle\left\langle q_{1}, V\right\rangle,\left\langle q_{2}, v\right\rangle\right. \text {, } \\
& v_{V^{\prime} v_{1}-}^{q_{m \lambda}} q_{q_{n} v_{n-1}}^{T} \\
&)^{T} \\
& \langle\langle q, u\rangle\rangle_{i}
\end{aligned}
$$

$$
" T: \mathbb{R}^{\prime \prime} \longrightarrow \mathbb{R}^{\prime \prime \prime}
$$

$$
T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}
$$

$$
\operatorname{fang}(T)=\mathbb{R}^{2}
$$

$$
M_{T}=\left[\begin{array}{cc}
1 & -1 \\
1 & -1 \\
1 & 0
\end{array}\right]_{3 \times 2}
$$

$$
\operatorname{dim} \operatorname{ker}\left(T^{*}\right)=\frac{1}{2}
$$

$$
T^{*}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
$$

$$
M_{T *}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

$$
\operatorname{ker}\left(T^{*}\right)=\operatorname{span}\{(-1,1,0)\}=\operatorname{sfan}\left\{-e_{1}^{*}+e_{2}^{*}\right\}
$$

